Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis.

Identifieur interne : 002866 ( Main/Exploration ); précédent : 002865; suivant : 002867

Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis.

Auteurs : Yuepeng Song [République populaire de Chine] ; Zeliang Wang ; Wenhao Bo ; Yuanyuan Ren ; Zhiyi Zhang ; Deqiang Zhang

Source :

RBID : pubmed:22747754

Descripteurs français

English descriptors

Abstract

BACKGROUND

Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis.

RESULTS

Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs) were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique.

CONCLUSION

The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of candidate genes of future experiments aimed at understanding this response of poplar.


DOI: 10.1186/1471-2164-13-286
PubMed: 22747754
PubMed Central: PMC3443059


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis.</title>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P R China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zeliang" sort="Wang, Zeliang" uniqKey="Wang Z" first="Zeliang" last="Wang">Zeliang Wang</name>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
</author>
<author>
<name sortKey="Ren, Yuanyuan" sort="Ren, Yuanyuan" uniqKey="Ren Y" first="Yuanyuan" last="Ren">Yuanyuan Ren</name>
</author>
<author>
<name sortKey="Zhang, Zhiyi" sort="Zhang, Zhiyi" uniqKey="Zhang Z" first="Zhiyi" last="Zhang">Zhiyi Zhang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22747754</idno>
<idno type="pmid">22747754</idno>
<idno type="doi">10.1186/1471-2164-13-286</idno>
<idno type="pmc">PMC3443059</idno>
<idno type="wicri:Area/Main/Corpus">002979</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002979</idno>
<idno type="wicri:Area/Main/Curation">002979</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002979</idno>
<idno type="wicri:Area/Main/Exploration">002979</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis.</title>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P R China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zeliang" sort="Wang, Zeliang" uniqKey="Wang Z" first="Zeliang" last="Wang">Zeliang Wang</name>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
</author>
<author>
<name sortKey="Ren, Yuanyuan" sort="Ren, Yuanyuan" uniqKey="Ren Y" first="Yuanyuan" last="Ren">Yuanyuan Ren</name>
</author>
<author>
<name sortKey="Zhang, Zhiyi" sort="Zhang, Zhiyi" uniqKey="Zhang Z" first="Zhiyi" last="Zhang">Zhiyi Zhang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amplified Fragment Length Polymorphism Analysis (MeSH)</term>
<term>Apoptosis (genetics)</term>
<term>Cluster Analysis (MeSH)</term>
<term>DNA, Complementary (metabolism)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Dehydration (genetics)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (métabolisme)</term>
<term>Analyse de polymorphisme de longueur de fragments amplifiés (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Apoptose (génétique)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Déshydratation (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Apoptosis</term>
<term>Dehydration</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Apoptose</term>
<term>Déshydratation</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN complémentaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amplified Fragment Length Polymorphism Analysis</term>
<term>Cluster Analysis</term>
<term>Databases, Genetic</term>
<term>Droughts</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de polymorphisme de longueur de fragments amplifiés</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Bases de données génétiques</term>
<term>Gènes de plante</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs) were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of candidate genes of future experiments aimed at understanding this response of poplar.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22747754</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis.</ArticleTitle>
<Pagination>
<MedlinePgn>286</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-13-286</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs) were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of candidate genes of future experiments aimed at understanding this response of poplar.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yuepeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P R China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zeliang</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bo</LastName>
<ForeName>Wenhao</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Yuanyuan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhiyi</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054458" MajorTopicYN="N">Amplified Fragment Length Polymorphism Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22747754</ArticleId>
<ArticleId IdType="pii">1471-2164-13-286</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-13-286</ArticleId>
<ArticleId IdType="pmc">PMC3443059</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 1999 Oct;11(10):1897-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Sep;51(350):1543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Apr;4(2):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11228436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11535836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Feb;89(2):183-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12099349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Jun;89 Spec No:841-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Nov;12(11):1749-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12421762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 May;269(2):173-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 2;22(11):2623-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jun;15(6):1386-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Aug 15;31(16):e94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12907746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Dec 12;302(5652):1917-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Apr;38(2):366-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(4):537-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Nov;55(407):2331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):88-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 7;281(27):18793-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1389-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1559-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17056758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):876-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1398-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 2007;54(1):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17325747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007 Nov 06;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2008 Aug;8(3):287-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2008 Jul;30(7):1281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18317696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 May;147(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Oct;134(2):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18494857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2008 Jul;7(4):264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(4):551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Jan;10(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2009 May;42(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19101826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Apr;33(4):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):226-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Mar 19;285(12):9190-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20089852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Apr;13(2):206-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jun;73(3):251-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Mar 19;393(4):720-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20171162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2010 Apr;21(2):197-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1742-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Aug;284(2):105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20577761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Feb 15;168(3):280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1254-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Nov 12;11:630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21512100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1996 Feb;50(1):92-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Sep 24;217(4566):1214-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7112124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843981</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<name sortKey="Ren, Yuanyuan" sort="Ren, Yuanyuan" uniqKey="Ren Y" first="Yuanyuan" last="Ren">Yuanyuan Ren</name>
<name sortKey="Wang, Zeliang" sort="Wang, Zeliang" uniqKey="Wang Z" first="Zeliang" last="Wang">Zeliang Wang</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<name sortKey="Zhang, Zhiyi" sort="Zhang, Zhiyi" uniqKey="Zhang Z" first="Zhiyi" last="Zhang">Zhiyi Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002866 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002866 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22747754
   |texte=   Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22747754" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020